

Anatomic Short Shoulder Prosthesis

Table of contents

- Context
- The anatomic shoulder
- Competitive analysis
- Surgical technique
- Reference list and SNP

Context

- Different type of shoulder prosthesis

 for different clinical indications:
 - Age of patient or activity level
 - Demineralisation status or bone stock
 - Degree and position of cartilage wear
 - State of the rotator cuff / articular stability
 - Degenerative / trauma

Context

- Different type of shoulder prosthesis
 - from less invasive to more invasive:
 - Humeral resurfacing or stemless humeral implant
 - Hemiarthroplasty
 - Anatomic TSA
 - Reverse TSA
 - Fracture Reverse TSA
 - CTA (cuff tear arthroplasty)
 - Revision Reverse

The anatomic shoulder

The anatomic shoulder

- What is the challenge?
 - Implant: sufficient number of sizes and diameter/thickness ratio to adapt closely to each situation
 - Instruments: assist and achieve accurate reproduction of
 - Volume of humeral head
 - Orientation of cut // axial humerus
 - Retroversion of cut

UNIC anatomic & UNIC STEMLESS

In 2012, in France, the market shares were:

- Hemiarthroplasties:	2889	26%
- Total Anatomic:	3308	30%
- Total reverse:	4743	43%
- Resurfacing:	0095	01%

UNIC STEMLESS can be indicated in:

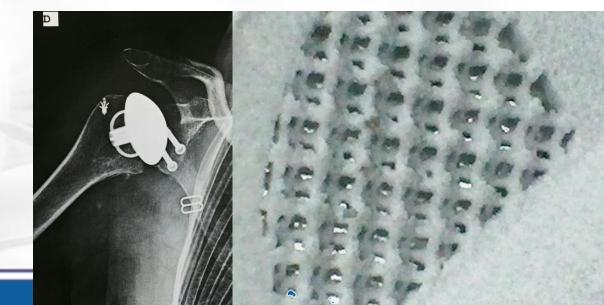
- Hemiarthroplasty
- Total Anatomic
- Resurfacing

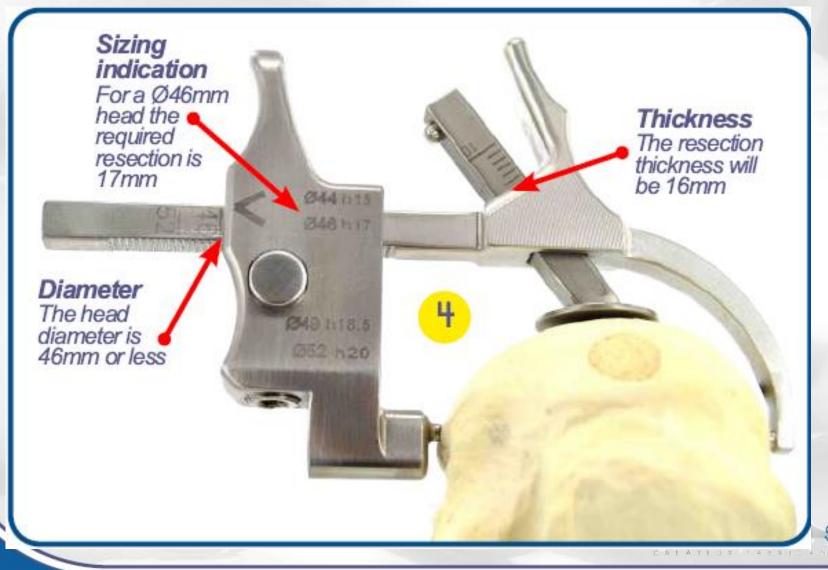
57%

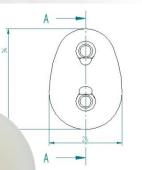
The anatomic shoulder

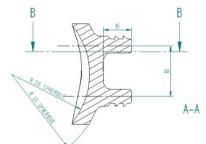
- Indication:
 - Patients less than 75
 - Good rotator cuff
 - Degenerative omarthrosis
- Requirements:
 - Hemi or total arthroplasty
 - Preservation of the existing cuff
 - Implant replaces the bone in position and volume

The anatomic shoulder


Why should we use a STEMLESS implant ?


- Humeral head can be positioned independently of the humeral shaft axis, especially important in post traumatic arthritis situations
- Excellent anatomic reconstruction of the humeral head as the prosthesis can be adjusted to the cortical rim of the humeral resection at the anatomical neck
- Potential for less invasive exposure
- Unrestricted approach to the glenoid
- Simplified revision arthroplasty and avoidance of complications associated with humeral shaft osteotomy




- 5 diameters of baseplate 25 to 38mm
- 8 diameters of humeral head 35 to 52mm
- Choice of 2 thicknesses from head 41mm
- Additive technology for enhanced bone ingrowth
- Instrumentation allows resection plan / diameter / thickness selection in one step

Glenoid component

- All PE, bone saving curved contact area with bone
- 2 pegs, bone sparing,
- Cemented only
- avoids keel "rocking" effect,
- allows for revision to reverse
- 2mm mismatch between head and bearing surface to avoid being too congruent

Competitive Analysis

Competition

- Different solutions for an anatomic and bone preserving humeral component:
 - Short stem (Aequalis Ascent)
 - Total Resurfacing (Copeland, Global-Cap)
 - Focal Resurfacing (Hemi-Cap)
 - Epiphyseal stem (Unic Stemless, TESS...)

Competition (Short stem)

- Less invasive than a conventional humeral stem?: only in the distal intramedullar part.
- Can be retro-converted to a reverse total prosthesis
- Low and high offset humeral heads to adjust to anatomy
- Position of head dependant on the intramedullar axis, may not be more anatomic than a conventional stem

Competition (Total resufacing)

- Initiated by Copeland (Biomet UK)
- Similar concept to hip resurfacing
- Superficial reaming of the humeral head
- Cemented Resurfacing humeral head with central keel and low thickness
- Technically demanding
- VERY DIFFICULT access to the glenoid
- Complications:
 - overstuffing of articular space
 - with anatomic centralization of the implant
 - Concerns about the stress-shielding of the bone stock

Competition (Focal resurfacing) One only diameter of implant (35mm) Choice of 10 offsets (6.5mm to 10mm) Restores the articular congruity High technical skill recommended

- No back-up solution in case of complication
- Indications of hemiarthroplasty only

Hemi-Cap « Arthrosurfaces »

(1)

(3)

Nano (Biomet)

Dispositifs d'épaule à fixation épiphyso-métaphysaire : (1) TESS (Biomet), (2) AFFINIS (Mathys), (3) ECLIPSE (Arthrex), (4) SIDUS (Zimmer), (5) SIMPLICITI (Tornier), (6) UNIC STEMLESS (Evolutis)

Ø44 h15

• UNIC STEMLESS

- 5 diameters of baseplate 25 to 38mm
- 8 diameters of humeral head 35 to 52mm
- Choice of 2 thicknesses from head 41mm
- Additive technology for enhanced bone ingrowth
- Instrumentation allows resection plan / diameter / thickness selection in one step

Biomet TESS (Nano)

- First stemless launched
- With or without intramedullar stem
- Available in Reverse but no compatibility between anatomic and reverse
- TESS is made of Cobalt Chrome with Porous T40 and HA coating.
- It consists of 6 branches, and a taper to fix the anatomical heads.
- Four sizes of corolla, 6 diameters of head, centered and excentric, no thickness adaptation

Simpliciti TORNIER

- 5 diameters of head (40 to 56), each in 3 thicknesses (STB version) or 7 diameters of head (39 to 52) with 2 thicknesses for 50 and 52 (standard)
- 3 sizes of « nucleus » (baseplate)
- Free-hands instrumentation : dedicated to expert surgeons

Fig. 4

Sidus ZIMMER

- Similar concept to Evolutis except additive manufacturing
- 8 head diameters 38 to 52
- 2 thickness options for 48, 50 and 52
- 3 baseplates 24 to 32
- Compatibility with different glenoids, including the trabecular metal

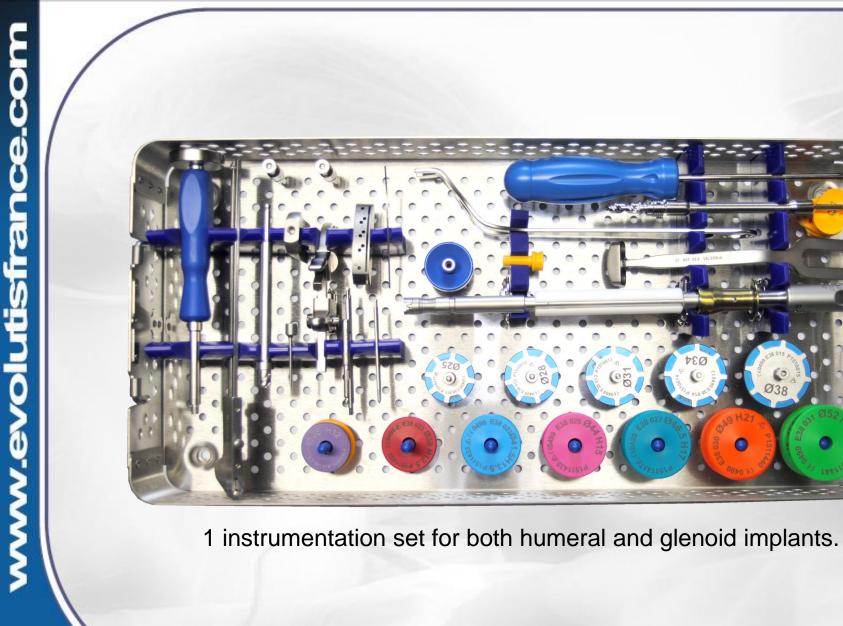
- Surgical technique similar to UNIC stemless except for the calibration of the resection level

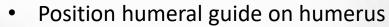
Affinis MATHYS

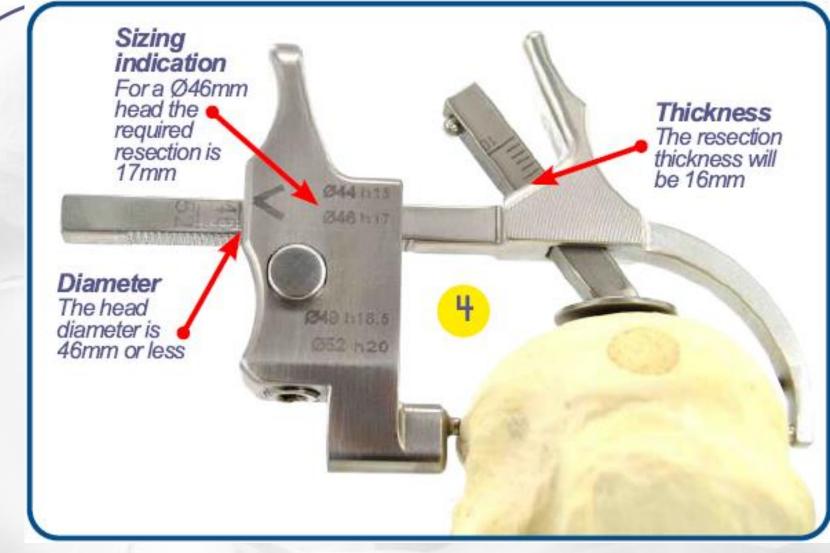
- Only Stemless with a alumina ceramic head
- Theoretically better for hemiarthroplasty
- 8 head diameters 39 to 53, no thickness option, increment 1mm/size begining 13
- Baseplate: 6 sizes
- Baseplate design with no collar: subsidence?
- Resection/orientation guide include a thickness gauge, but choice of 3 only: accuracy ?

Eclipse ARTHREX

- 8 anatomic head sizes available in 2 mm increments (39 to 53)
- 1 head thickness per diameter
- Fenestrated cage screw for enhanced fixation
- 4 cage screw lengths account for anatomical variations (30 to 45mm)
- Humeral cutting guide : only 2 sizes (small or large) no accuracy in resection thickness




Surgical technique



Ø44 h15

- Place anterior spike below the cartilage zone
- Check for posterior spike with same reference
- Tighten the guide for the spikes to penetrate the bone
- Check for perpendicularity of the guide with the cervical neck line

- Check correspondance of diameter/thickness values
- The thickness value on the guide is always the smallest one available
- If uncorrect, modify position of spikes

- Pin the guide in central position
- Remove the guide
- Place the cutting jig on the pin
- Search for alignment with the cervical neck using the stylus blade

- Place the pin centralizer on the head
- Pin through the centralizer and down to the lateral cortex

• Introduce one trial baseplate on the central pin

6

- The larger diameter of the trial baseplate (summit of the spigots) should not overhang the cortex bone
- The smaller diameter of the trial baseplate should remain away from the inner diameter of the cortex bone

F38

E

- Introduce the stop-drill on the central pin
- Drill the bone with until the stop
- Remove the drill
- Identify clearly the weak zones of the bone (bicipital groove and lesser tuberosity)
- Prepare the conformator with the impaction handle
- Present the conformator on the central pin
- Orientate the blades of the conformator away from the weak zones
- Impact the conformator completely

- Place the trial taper on the conformator
- Place a trial head of selected diameter and thickness, and reduce the shoulder for stability and mobility tests

E

- Remove the conformator and the pin
- Prepare the implant on the impaction handle
- Check that the fins are aligned with the cancellous shape
- Impact the baseplate until contact with the bone

- Prepare the humeral head
- Place the head on the taper of the baseplate
- Impact thoroughly for taper connection and final positioning of baseplate.

...least but not last :

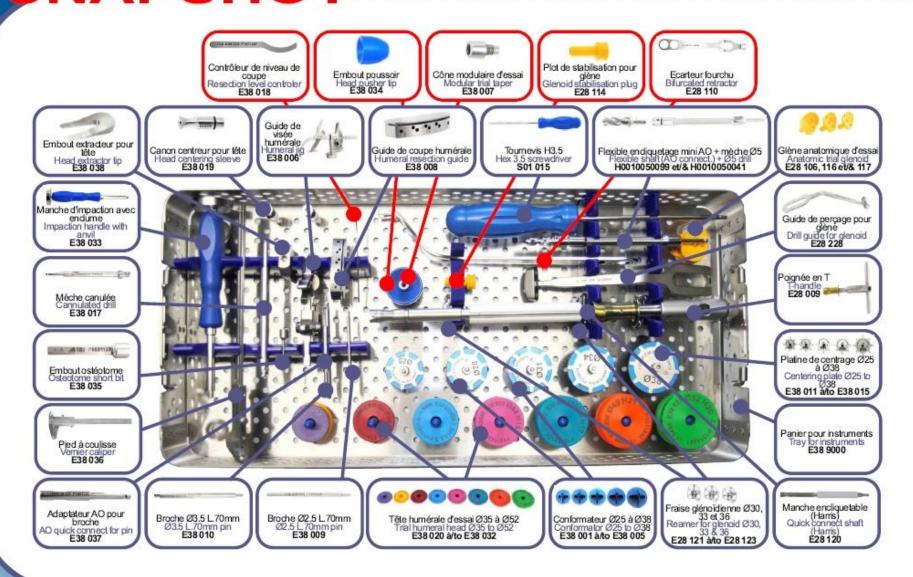
– If the STEMLESS UNIC needs to be revised:

6011

- Use the Head Extractor E38 038 to separate the humeral head from the Stemless baseplate.
- Prepare Impaction Handle H38 033 with Short Osteotome H38 035 and resect the bone fixation to the 4 wings.
- Attach the Impaction Handle directly to the implant and hammer the implant out.

Post operative radiographs

Reference List and SNP


Ref.code	Descr	iption	Ø	H. (mm)	Radius (mm)	Mismatcl (mm)
E37 001	Short anatomic stem S.25	Tige anatomique courte T.25	Ø25			
E37 002	Short anatomic stem S.28	Tige anatomique courte T.28	Ø28			
E37 003	Short anatomic stem S.31	Tige anatomique courte T.31	Ø31			
E37 004	Short anatomic stem S.34	Tige anatomique courte T.34	Ø34			
E37 005	Short anatomic stem S.38	Tige anatomique courte T.38	Ø38			
E37 M3512	Humeral head S.35/12	Tête humérale T.35/12	Ø35	H.12	21	-7
E37 M3712	Humeral head S.37/12	Tête humérale T.37/12	Ø37	H.12	22	-6
E37 M3912	Humeral head S.39/12	Tête humérale T.39/12	Ø39	H.12	23	-5
E37 M4113	Humeral head S.41/13	Tête humérale T.41/13	Ø41	H.13	24	-4
E37 M4116	Humeral head S.41/16	Tête humérale T.41/16	Ø41	H.16	24	-4
E37 M4415	Humeral head S.44/15	Tête humérale T.44/15	Ø44	H.15	24.5	-3.5
E37 M4418	Humeral head S.44/18	Tête humérale T.44/18	Ø44	H.18	24.5	-3.5
E37 M4617	Humeral head S.46/17	Tête humérale T.46/17	Ø46	H.17	25	-3
E37 M4620	Humeral head S.46/20	Tête humérale T.46/20	Ø46	H.20	25	-3
E37 M4918	Humeral head S.49/18	Tête humérale T.49/18	Ø49	H.18	26	-2
E37 M4921	Humeral head S.49/21	Tête humérale T.49/21	Ø49	H.21	26	-2
E37 M5220	Humeral head S.52/20	Tête humérale T.52/20	Ø52	H.20	27.5	-0.5
E37 M5223	Humeral head S.52/23	Tête humérale T.52/23	Ø52	H.23	27.5	-0.5
E27 130	Cemented anatomic glenoid S.1	Glène anatomique cimentée T.1	Ø30/22		28	
E27 133	Cemented anatomic glenoid S.2	Glène anatomique cimentée T.2	Ø33/24		28	
E27 136	Cemented anatomic glenoid S.3	Glène anatomique cimentée T.3	Ø36/26		28	

Instrumentation

Ref: E38 9100

UNIC STEMLESS

Probably the best shoulder system available !